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Abstract

In this paper, we propose a high order residual distribution conservative finite difference scheme for solving convection–
diffusion equations on non-smooth Cartesian meshes. WENO (weighted essentially non-oscillatory) integration and linear
interpolation for the derivatives are used to compute the numerical fluxes based on the point values of the solution. The
objective is to obtain a high order scheme which, for two space dimension, has a computational cost comparable to that of
a high order WENO finite difference scheme and is therefore much lower than that of a high order WENO finite volume
scheme, yet it does not have the restriction on mesh smoothness of the traditional high order conservative finite difference
schemes, hence it would be more flexible for the resolution of sharp layers. The principles of residual distribution schemes
are adopted to obtain steady state solutions. The distribution of residuals resulted from the convective and diffusive parts
of the PDE is carefully designed to maintain the high order accuracy. The proof of a Lax-Wendroff type theorem is pro-
vided for convergence towards weak solutions in one and two dimensions under additional assumptions. Extensive numer-
ical experiments for one and two-dimensional scalar problems and systems confirm the high order accuracy and good
quality of our scheme to resolve the inner or boundary layers.
� 2006 Elsevier Inc. All rights reserved.
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1. Introduction

In this paper, we are interested in designing high order conservative finite difference schemes for steady state
convection–diffusion equations
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where oF ðuÞ
ou � n is diagonalizable with real eigenvalues for any real vector n, and the matrix a(u,x) is semi-po-

sitive definite. This type of problems is found in a wide range of applications such as the Navier–Stokes equa-
tions in gas dynamics and the hydrodynamic and energy transport models in semiconductor device
simulations. The first derivatives in Eq. (1.1) are associated with convection while the second derivatives
are responsible for diffusion. The solution of Eq. (1.1) is smooth where the diffusion does not vanish. It is
also well known that the diffusion terms give rise to inner or boundary layers. In order to resolve the layers,
local grid refinement is advantageous, and we could have abrupt changes in mesh sizes. In practice, high order
conservative finite difference schemes (e.g. the WENO scheme in [12]) are favorable for multi-dimensional
problems due to their lower computational cost comparing with finite volume schemes. However, they have
problems handling abrupt changes in mesh sizes, and the accuracy might be lost due to the non-uniform
mesh.

To overcome the aforementioned difficulties, it is desirable to develop high order conservative schemes
which are of the finite difference type (the numerical approximations are the point values of the solution
and on structured meshes approximations to derivatives or integrals can be performed dimension by dimen-
sion) and have a computational cost comparable to that of regular finite difference schemes, yet the meshes are
allowed to be arbitrary Cartesian or curvilinear without any smoothness assumption. In this paper, our effort
is restricted to steady state problems (solutions to (1.1) which are time independent). Time dependent prob-
lems are significantly more difficult and will be left for future work. The work in this paper is an extension
of our previous work [8], in which we adopted the idea of ‘‘Residual Distribution’’ and developed schemes
with the above properties for steady state hyperbolic conservation laws.

The class of residual distribution (RD) schemes, or fluctuation splitting schemes for solving steady state
hyperbolic conservation laws
r � F ðuÞ ¼ 0 ð1:2Þ

was first introduced by Roe, Sidilkover, Deconinck, Struijs, Bourgeois et al. [20,9,22] and followed by later
works in, e.g. [23,24,1,3,4,6,5,14]. The RD schemes use a pointwise representation of the solution, same as
in finite difference schemes, and it allows conservative approximations with high order accuracy on very
general meshes. The RD schemes are composed of two parts: residual evaluation and residual distribution.
The framework of a residual distribution scheme for a two-dimensional conservation law (1.2) is given as
follows. We are given a general triangular or quadrilateral mesh, with nt elements fT jgj¼1;...;nt

and ns nodes
fMigi¼1;...;ns

which are the vertices of these elements. The residual UT over the element T is defined and
decomposed as
UT ¼
Z

T
divF hðuhÞdx;

X
i;Mi2T

UT
i ¼ UT ; ð1:3Þ
where Fh is an approximation of the flux function F in (1.2), and the total residual UT over the element T is
decomposed to a sum of residuals UT

i to be distributed to each node Mi of T. The design principles for the
distribution of the residual are described in [1]. In particular, the so-called residual property should hold, which
states that jUT

i j=jUT j should be uniformly bounded. This would imply that when the zero cell residual limit
UT = 0 is reached, the distributed residuals UT

i are also zeros. The dual cells, Ci, i = 1, . . . ,ns are obtained
by joining the centroids of the elements Tj having Mi as one of the nodes, to the mid-points of the edges of
Tj. If we denote the collection of elements Tj having Mi as one of the nodes as Si, then the residual distribution
scheme is given as
unþ1
i ¼ un

i �
Dtn

jCij
X
T2Si

UT
i : ð1:4Þ
At steady state, with vanishing cell residuals, the accuracy can be obtained.
To extend RD scheme to convection–diffusion equations, efforts were made to properly discretize and dis-

tribute the diffusion terms in Eq. (1.1). In [17], Paillère et al. propose two discretizations: one is to use a RD
scheme for the convection terms while adding a Galerkin discretization of the diffusion terms; the other is a
residual based scheme in which one has to compute the residual from the diffusion terms and distribute the
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residuals from convective and diffusive parts together with the upwind coefficients. The former discretization is
physically reasonable since the diffusion does not have a preferred spatial direction, and it has been applied to
Navier–Stokes equations [25]. There are also works devoted to high order discretizations for the diffusion
terms, e.g. [13,7,15]. In [16], Nishikawa and Roe point out that the Galerkin discretization for the diffusion
terms would lead to a loss of order of accuracy, according to truncation error analysis. They propose to write
the governing equations as a first order system to get high order accuracy. Using a different technique, Ric-
chiuto et al. [18] rewrite the RD scheme as a perturbation of the Galerkin scheme weighted by a properly
scaled function, so that the scheme gives a correct behavior for the convection or diffusion dominated regimes.
The scaling depends on a cell Peclet number, which in scalar linear advection–diffusion equations is defined as
hT
ffiffiffiffi
~k�~k
p
m , where hT is the reference length scale for cell T,~k is the speed associated with the convection terms and m

is the viscosity coefficient of the diffusion terms.
In the present paper, we propose high order finite difference schemes on rectangular meshes which are not

necessarily smooth. The cell residuals in Eq. (1.3) are modified to be
UT ¼
Z

T
divF hðuhÞdx�

Z
T
r � ðaðu; xÞruÞdx: ð1:5Þ
We evaluate the cell residuals through WENO integration with the first derivatives interpolated by central dif-
ference. The main purpose of this restriction on the meshes is the observation that the evaluation of the resid-
uals in Eq. (1.5) in 2D, which is in general two-dimensional integrals, can be decomposed to a dimension by
dimension one-dimensional computation. This is the key to save the computational costs. As for residual dis-
tribution, the distribution coefficients are no long purely upwind, but weighted by a cell Peclet number defined
above, which measures the relative importance of the convection terms with respect to the diffusion terms.

This paper is organized as follows. In Sections 2 and 3, we describe the residual evaluation and the residual
distribution procedures for one and two-dimensional problems respectively. Section 4 contains extensive
numerical simulation results for one and two-dimensional scalar and system steady state problems to demon-
strate the good behavior of our scheme. Concluding remarks are given in Section 5. The Lax-Wendroff type
theorem for convergence towards weak solutions is proven for the one-dimensional case in Section 2 and for
the two-dimensional case in Appendix.
2. High order RD finite difference WENO schemes in one dimension

In this section, we design a residual distribution finite difference WENO scheme for one-dimensional steady
state convection–diffusion equations. In the first subsection, we define the residual through integral form, and
then describe the distribution of residuals. The distribution is designed through a cell Peclet number and fol-
lows the principles of the residual property. In the second subsection, we generalize the scheme to one-dimen-
sional systems, based on a local characteristic field decomposition, and distribute the residuals as in the scalar
case in the characteristic fields.
2.1. One-dimensional scalar problems

We have the one-dimensional scalar steady state problem
f ðuÞx ¼ gðu; xÞ þ muxx; m P 0: ð2:1Þ
We define the grid to be {xi}i=0, . . ., N, grid function {ui}i=0, . . . ,N, the interval I iþ1
2
¼ ½xi; xiþ1� with length Dxiþ1

2
,

the control volume centered at xi to be Ci (from the mid-point of the interval I i�1
2

to the mid-point of the inter-
val I iþ1

2
), and the length of Ci is denoted by jCij.

The residual in the interval I iþ1
2

is define by
Uiþ1
2
¼
Z xiþ1

xi

ðf ðuÞx � gðu; xÞ � muxxÞdx ¼ f ðuiþ1Þ � f ðuiÞ �
Z xiþ1

xi

gðu; xÞdx� muxðxiþ1Þ þ muxðxiÞ: ð2:2Þ
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If we can reach the zero cell residual limit, i.e. if Uiþ1
2
¼ 0 for all i, then the accuracy of the scheme is deter-

mined by the accuracy of the approximation to
R xiþ1

xi
gðu; xÞdx, ux(xi) and ux(xi+1). In our scheme, we use a

fourth order central WENO integration, which is described in [8], to approximate the integralR xiþ1

xi
gðu; xÞdx. To approximate the derivatives associated with the diffusion term, for example ux(xi), we use

the central stencil {xi�2,xi�1,xi,xi+1,xi+2}, and express the approximation as a linear combination of the point
values in the stencil, namely,
uxðxiÞ ¼
X2

m¼�2

cm
i uiþm þOðDx4Þ; ð2:3Þ
where cm
i depends on the mesh sizes in the stencil and can be pre-computed once given the grid. Fourth order

accuracy is therefore guaranteed at the zero cell residual limit. We remark that the first derivatives are evaluated
to form the residual of the diffusion terms uxx in Eq. (2.1), which is dissipative in nature, and hence it is reasonable
to use linear weights in Eq. (2.3). Our numerical experience reveals that using linear weights rather than WENO
weights in (2.3) is crucial in getting correct solutions. As an extreme example, if the initial condition is a discon-
tinuous step function, then a WENO approximation of the derivative ux is almost zero everywhere, since the
stencil which crosses the discontinuity has a very small weight. This would imply that the viscous terms in the
residual (2.2) give almost zero contribution even for the cell crossing the discontinuity, which is clearly incorrect.

Next, we start to distribute the residuals. We note that the residual is composed of two parts. One is from
the convection term, which we denote by Uc

iþ1
2

Uc
iþ1

2
¼ f ðuiþ1Þ � f ðuiÞ �

Z xiþ1

xi

gðu; xÞdx; ð2:4Þ
and the other part is from the diffusion term, denoted by Ud
iþ1

2

Ud
iþ1

2
¼ �muxðxiþ1Þ þ muxðxiÞ: ð2:5Þ
By the nature of convection, upwinding is needed to distribute Uc
iþ1

2
, as described in [1]. As for the residual Ud

iþ1
2

associated with diffusion, isotropic distribution is more appropriate since there is no preferred spatial direction
for the diffusive part. In [16], the authors pointed out that if we distribute Uc

iþ1
2

and Ud
iþ1

2
separately, the order of

accuracy would be compromised and this can be expected through truncation error analysis. Numerical exper-
iments also reveal the degrading to first order accuracy due to the incompatible distribution. Therefore, to

maintain high order accuracy, we should distribute Uc
iþ1

2
and Ud

iþ1
2

altogether, namely, distribute Uiþ1
2
, and

meanwhile recognize the dominating effect in the cell. In this paper, we follow a type of distribution proposed
in [16]. The details are explained as follows.

In the interval [xi,xi+1], the residual is Uiþ1
2
, and it is to be distributed to the nodes xi and xi+1. For simplicity

and with no ambiguity, we drop the subscript iþ 1
2

for the residuals. Here we denote the residual distributed to
the point xi+1 and xi as U+ and U� respectively. We require U = U+ + U� for the conservation and require
jU±j/jUj to be uniformly bounded by the residual property [1], which implies that when the zero cell residual
limit Uiþ1

2
¼ 0 is reached, the distributed residuals U± are also zeros. Inspired by [16], one way to distribute the

residual is the following:
Uþ ¼ âU; U� ¼ ð1� âÞU; â 2 ½0; 1� ð2:6Þ
with the distribution coefficient â defined by
â ¼
aþ km

2ðj�kjþ�ÞDx
iþ1

2

1þ km
ðj�kjþ�ÞDx

iþ1
2

: ð2:7Þ
In Eq. (2.7), �k ¼ ðf 0ð�uÞ, �u) is the average state in the cell taken to be 1
2
ðui þ uiþ1Þ, k is chosen accordingly in the

problem, � is a small number which avoids the denominator to be zero and is taken as 10�6 in our tests. The
number a is the distribution coefficient associated with the convection and is determined by
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a ¼
1; if �k P e;

0; if �k 6 �e;

rð�k; eÞ; otherwise;

8><
>:
where �k is defined as above. The function r(Æ,Æ) is the entropy correction function for the Roe scheme [10] de-
fined by
rðk; eÞ ¼ 1

4e3
ðkþ eÞ2ð2e� kÞ ð2:8Þ
and e is chosen accordingly in the problem.
From Eq. (2.7), we note that if the diffusion is very small relatively in a cell, the distribution coefficient â is

close to a, so upwinding plays the role in the distribution. Conversely, if the diffusion dominates, â is close to 1
2
,

and isotropic distribution takes place in the cell.
Finally, the point value ui is updated through sending the distributed residuals to the point xi, as in a pseudo

time-marching scheme, which can be written as a semi-discrete system
dui

dt
þ 1

jCij
ðUþ

i�1
2
þ U�iþ1

2
Þ ¼ 0: ð2:9Þ
In our numerical experiments, we use a third order TVD Runge–Kutta scheme [21] for the (pseudo) time dis-
cretization. Since the accuracy in time is irrelevant here, any stable time marching can be used, and strategies
such as preconditioning and multigrid can be used to accelerate convergence towards steady state, but we do
not pursue these approaches in this paper. Because of the residual property, namely the uniform boundedness
of jU±j/jUj, a zero cell residual limit Uiþ1

2
¼ 0 is clearly also a steady state solution of (2.9). Conversely, a stea-

dy state solution of (2.9) may not imply a zero cell residual limit Uiþ1
2
¼ 0 for all i. In fact, a simple counting of

the number of unknowns and the number of cell-residuals would show an over-determined system if the solu-
tion at both boundaries are prescribed, hence it may not be realistic to always require a zero cell residual. Our
numerical experiments indicate that, near shocks or sharp gradients, Uiþ1

2
may not be small even if the steady

state solution of (2.9) is reached. Convergence towards weak solutions in this case would thus need to rely on
a Lax-Wendroff type theorem stated and proved in the following. We remark here that in the proof, due to
some technical difficulties, we additionally assume that the mesh is uniform or smoothly varying. This
assumption does not seem necessary according to our numerical experiments, and we are still exploring a
proof for non-smooth meshes. Most of the numerical results presented in this paper are performed on
non-smooth meshes.

As defined in Eq. (2.2), (2.4) and (2.5), the residual is defined by
Uiþ1
2
¼ Uc

iþ1
2
þ Ud

iþ1
2
;

where the convective and diffusive residuals are given by
Uc
iþ1

2
¼ f ðuiþ1Þ � f ðuiÞ �RðgðuDx; xÞ; I iþ1

2
Þ

Ud
iþ1

2
¼ �mDðuDx; xiþ1Þ þ mDðuDx; xiÞ;

ð2:10Þ
where RðgðuDx; xÞ; I iþ1
2
Þ is an approximation of

R
I

iþ1
2

gðu; xÞdx, which can be written as a linear combination of

the point values of g. The quantity DðuDx; xiÞ approximates ux(xi) and can be written as a linear combination of
the point values of u,
DðuDx; xiÞ ¼
Xr�1

k¼�rþ1

ck
i uiþk: ð2:11Þ
which is of (2r � 2)th order accuracy. Since we use symmetric linear weights to approximate the derivatives,
and furthermore (for the proof of the Lax-Wendroff type theorem) assume the mesh is uniform, we have
ck
i ¼ ck; ck ¼ �c�k: ð2:12Þ
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The distributed residuals, as defined in Eq. (2.6), are U�iþ1
2
, with the conservation property,
Uiþ1
2
¼ Uþ

iþ1
2
þ U�iþ1

2
ð2:13Þ
and the residual property
jU�iþ1
2
j

jUiþ1
2
j 6 C; ð2:14Þ
where here and below C with or without subscriptions denotes constants independent of the mesh sizes.
Equipped with the above properties, we have the following Lax-Wendroff type theorem.

Theorem 2.1. Assume that the flux function f in Eq. (2.1) is Lipschitz continuous, and the source term g(u,x) is

continuous in both arguments. Suppose that the mesh is uniform: Dxiþ1
2
¼ Dx. If uDx is a steady state solution of Eq.

(2.9) satisfying Eqs. (2.10), (2.13) and (2.14), and if there is a function u with bounded total variation such that
uDx ! u in L1ðRÞ; as Dx! 0
and
sup
Dx

sup
x
juDxðxÞj 6 C1
then u is a weak solution to Eq. (2.1).

Proof. At steady state of the scheme, Uþ
i�1

2
þ U�iþ1

2
¼ 0 for all i. Let u 2 C10 ðRÞ be a test function, and denote

ui = u(xi). We have,
0 ¼
X

i

ðUþ
i�1

2
þ U�iþ1

2
Þui ¼

X
i

Ui�1
2
ui �

X
i

U�i�1
2
ðui � ui�1Þ ¼ Iþ II:
We look at the first summation term
I ¼
X

i

Ui�1
2
ui ¼

X
i

ðf ðuiÞ � f ðui�1Þ �RðgðuDx; xÞ; I i�1
2
ÞÞui � m

X
i

ðDðuDx; xiÞ �DðuDx; xi�1ÞÞui

¼ �
X

i

f ðuiÞ
ðuiþ1 � uiÞ

Dx
Dx�

X
i

RðgðuDx; xÞ; I i�1
2
Þui � m

X
i

ðDðuDx; xiÞ �DðuDx; xi�1ÞÞui:
Note that
�
X

i

f ðuiÞ
ðuiþ1 � uiÞ

Dx
Dx! �

Z
f ðuÞux dx; as Dx! 0
and
X
i

RðgðuDx; xÞ; I i�1
2
Þui !

Z
gðu; xÞudx; as Dx! 0:
Moreover, equipped with Eqs. (2.11) and (2.12), we have
X
i

ðDðuDx; xiÞ �DðuDx; xi�1ÞÞui ¼
X

i

DðuDx; xiÞðui � uiþ1Þ ¼
X

i

Xr�1

k¼�rþ1

ckuiþkðui � uiþ1Þ

¼
X

i

ui

Xr�1

k¼�rþ1

ckðui�k � ui�kþ1Þ ¼
X

i

ui

Xr�1

k¼�rþ1

�c�kðui�k � ui�kþ1Þ

¼
X

ui

Xr�1

ckðuiþ1þk � uiþkÞ ¼
X

ui
DðuðxÞ; xiþ1Þ �DðuðxÞ; xiÞ

Dx
Dx:
i k¼�rþ1 i
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Therefore,
X
i

ðDðuDx; xiÞ �DðuDx; xi�1ÞÞui !
Z

uuxx dx; as Dx! 0
and Z Z Z

I! � f ðuÞ ux dx� gðu; xÞ udx� m uuxx dx:
Next, we estimate the second term II�

jIIj ¼

X
i

U�i�1
2
ðui � ui�1Þ

�����
���� 6

X
i

jU�i�1
2
jjui � ui�1j 6 C

X
i

jUi�1
2
jjui � ui�1j

6 C
X

i

jf ðuiÞ � f ðui�1Þjjui � ui�1j þ C
X

i

jRðgðuDx; xÞ; I i�1
2
Þj jui � ui�1j

Dx
Dxþ m

X
i

jDðuDx; xiÞ

�DðuDx; xi�1Þjjui � ui�1j

6 C2

X
i

jui � ui�1jDxþ C2Dx
X

i

jRðgðuDx; xÞ; I i�1
2
Þj jui � ui�1j

Dx
:

The second term above without the Dx factor converges to C2

R
jgðu; xÞuxjdx and hence the second term itself

is O(Dx). As for the first term,
X
i

jui � ui�1jDx 6
X

i

jui � uðxiÞjDxþ
X

i

juðxiÞ � uðxi�1ÞjDxþ
X

i

juðxi�1Þ � ui�1jDx:
By the L1 convergence of the scheme and the fact that u(x) has bounded total variation, jIIj ! 0 as Dx! 0,
and we can conclude that
�
Z

f ðuÞ ux dx�
Z

gðu; xÞ udx� m
Z

uuxx dx ¼ 0
namely, u is a weak solution to Eq. (2.1). h

We now summarize the procedure of the high order RD finite difference WENO scheme for one-dimen-
sional scalar problems:

1. Compute the residuals defined in Eq. (2.2) using WENO integration and linear interpolation for the deriv-
atives with a proper accuracy.

2. Distribute the residuals according to Eq. (2.6).
3. Update the point values through sending the residuals and forward in pseudo time (2.9) by a TVD Runge–

Kutta time discretization until the steady state is reached.
2.2. One-dimensional systems

Consider a one-dimensional steady state system (2.1) where u, f(u) and g(u) are vector-valued functions in
Rm and m is a semi-positive definite matrix. For convection–diffusion systems, we assume that the Jacobian
f 0(u) can be written as LKR, where K is a diagonal matrix with real eigenvalues on the diagonal, and L and
R are matrices of left and right eigenvectors of f 0(u) respectively.

The grid, the grid function and the control volumes are denoted as in Section 2.1. The residual in the inter-
val [xi,xi+1] is again defined by Eq. (2.2). As before, the accuracy of the scheme is determined by the accuracy
of the approximation to

R xiþ1

xi
gðu; xÞdx, ux(xi) and ux(xi+1). The approximated integral is obtained by a fourth

order central WENO integration and the approximated derivatives are obtained by fourth order central linear
interpolation given in Eq. (2.3).

In order to distribute the residual Uiþ1
2
, we use a local characteristic decomposition in the interval [xi,xi+1].

First, we compute an average state �u between ui and ui+1, using either the simple arithmetic mean or a Roe’s
average [19], and denote �L and �R to be the matrices with left and right eigenvectors L and R evaluated at the
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average state, and �kk the corresponding kth eigenvalue. In the following, for simplicity of the notation and
with no ambiguity, we drop the subscript iþ 1

2
in the residuals. We project the residual U to the characteristic

fields, namely, W ¼ �RU. The residual W is to be distributed to the two endpoints xi and xi+1, and we denote the
residual sent to xi+1 and xi by W+ and W�, respectively, with W = W+ + W�. Those residuals are defined by
Wþ ¼ RW; W� ¼ ðI � RÞW; ð2:15Þ

where I is the identity matrix and R is a diagonal matrix with the mth diagonal component
Rmm ¼
am þ kjmj

2ðj�kmjþ�ÞDx
iþ1

2

1þ kjmj
ðj�kmjþ�ÞDx

iþ1
2

ð2:16Þ
with � taken as 10�6 to avoid the denominator to be zero, and jmj the spectral radius of the matrix m. The num-
ber am is the distribution coefficient associated with convection in mth characteristic field
am ¼
1; if �km P e;

0; if �km 6 �e;

rð�km; eÞ; otherwise;

8><
>:
with the function r(Æ,Æ) defined in Eq. (2.8) and e chosen accordingly in the problem.
Next, we project the distributed residuals back to the physical space, and denote U+ and U� to be the resid-

uals in the physical space which are sent to the points xi+1 and xi, respectively
Uþ ¼ �LWþ; U� ¼ �LW�: ð2:17Þ

Finally, as in the scalar case, the point value ui can be updated in the pseudo time-marching semi-discrete

scheme (2.9), which is again discretized by a third order TVD Runge–Kutta scheme in our numerical exper-
iments until the steady state is reached.

We now summarize the procedure of the high order RD finite difference WENO scheme for one-dimen-
sional steady state systems:

1. Compute the residuals defined in Eq. (2.2) using WENO integration and linear interpolation for the deriv-
atives with a proper accuracy.

2. Project the residuals to local characteristic fields.
3. Distribute the residuals with coefficients defined in Eq. (2.15) in the characteristic fields.
4. Project the distributed residuals in characteristic fields back to the physical space as in (2.17).
5. Update the point values through sending the residuals in the physical space and forward in pseudo time

(2.9) by a TVD Runge–Kutta time discretization until the steady state is reached.

3. High order RD finite difference WENO schemes in two dimension

In this section, we design a high order RD finite difference WENO scheme for two-dimensional steady state
convection–diffusion problems on non-smooth curvilinear meshes. To be precise, we restrict our attention to
such curvilinear meshes which can be smoothly mapped to non-smooth Cartesian meshes. We would then solve
a modified PDE on a (non-smooth) Cartesian mesh. We therefore only need to describe our algorithm for Carte-
sian meshes. In Section 3.1, we define the residuals from the integral form, as in Eq. (1.5), and then describe the
distribution mechanism. In Section 3.2, we extend the scheme to two-dimensional systems, based on a local char-
acteristic field decomposition, and distribute the residuals in characteristic fields dimension by dimension.
3.1. Two-dimensional scalar problems

We have the two-dimensional scalar steady state problem
f ðuÞx þ gðuÞy ¼ hðu; x; yÞ þ mðuxx þ uyyÞ m P 0: ð3:1Þ
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We define the grid to be {(xi,yj)}, grid function {uij}, the cells I iþ1
2;jþ

1
2
¼ ½xi; xiþ1� � ½yj; yjþ1�, the control volume

centered at (xi,yj) to be Cij (formed by connecting the centers of the four cells sharing (xi,yj) as a common
node), and the area of Cij is denoted by jCijj. We also denote Dxiþ1

2
¼ xiþ1 � xi and Dyjþ1

2
¼ yjþ1 � yj.

The residual in the cell I iþ1
2;jþ

1
2

is defined by
Uiþ1
2;jþ

1
2
¼
Z yjþ1

yj

Z xiþ1

xi

ðf ðuÞx þ gðuÞy � hðu; x; yÞ � mðuxx þ uyyÞÞdxdy

¼
Z yjþ1

yj

ðf ðuðxiþ1; yÞÞ � f ðuðxi; yÞÞÞdy þ
Z xiþ1

xi

ðgðuðx; yjþ1ÞÞ � gðuðx; yjÞÞÞdx

�
Z yjþ1

yj

Z xiþ1

xi

hðuðx; yÞ; x; yÞdxdy �
Z yjþ1

yj

mðuxðxiþ1; yÞ � uxðxi; yÞÞdy

�
Z xiþ1

xi

mðuyðx; yjþ1Þ � uyðx; yjÞÞdx: ð3:2Þ
If we reach the zero cell residual limit, i.e. if Uiþ1
2;jþ

1
2
¼ 0 for all i and j, the accuracy of the scheme is determined by

the accuracy of the approximations to the derivatives and the integrations. The approximations of the derivatives
ux(Æ,Æ) and uy(Æ,Æ) are obtained from one-dimensional fourth order central linear interpolation given in Eq. (2.3).

To approximate the integration of the fluxes and the derivatives, which are one-dimensional integrals, we
use a fourth order central WENO integration. As for the source term

R yjþ1

yj

R xiþ1

xi
hðu; x; yÞdxdy, we can approx-

imate it in a dimension by dimension fashion, which is explained as follows. First, we define
H jþ1
2
ðxÞ ¼

Z yjþ1

yj

hðuðx; yÞ; x; yÞdy
and hence
Z yjþ1

yj

Z xiþ1

xi

hðu; x; yÞdxdy ¼
Z xiþ1

xi

Hjþ1
2
ðxÞdx:
The integral
R xiþ1

xi
H jþ1

2
ðxÞdx can be approximated by a fourth order WENO integration in the x-direction,

using fH jþ1
2
ðxiþkÞgk¼�1;...;2. By the definition of H jþ1

2
ðxÞ, H jþ1

2
ðxiþkÞ can again be approximated by a fourth order

WENO integration in the y-direction, using {h(ui+k,j+l,xi+k,yj+l)}l=�1, . . . ,2. Therefore, the integration of the
source term can be approximated dimension by dimension, and the fourth order accuracy is obtained at
the zero cell residual limit.

Next, we start to distribute the residuals. In the cell I iþ1
2;jþ

1
2
¼ ½xi; xiþ1� � ½yj; yjþ1�, the residual is Uiþ1

2;jþ
1
2
, and

it is to be distributed to the vertices of the cell, which are defined to be M1 = (xi+1,yj+1), M2 = (xi+1,yj),

M3 = (xi,yj+1) and M4 = (xi,yj). Here we define the residuals sent to the vertices Ml as Ul
iþ1

2;jþ
1
2

for

l = 1, . . . ,4. For simplicity and without ambiguity, we drop the subscript ðiþ 1
2
; jþ 1

2
Þ in the notations. For

conservation and the residual property, we require U ¼
P4

l¼1U
l and jUlj/jUj to be uniformly bounded.

Following the one-dimensional case, one way to distribute the residual is defined by
U1 ¼ âb̂U; U2 ¼ âð1� b̂ÞU; U3 ¼ ð1� âÞb̂U; U4 ¼ ð1� âÞð1� b̂ÞU; â; b̂ 2 ½0; 1�: ð3:3Þ
The distribution coefficient â in x-direction is given by
â ¼
aþ km

2ðj�kxjþ�ÞDx
iþ1

2

1þ km
ðj�kx jþ�ÞDx

iþ1
2

: ð3:4Þ
In Eq. (3.4), �kx ¼ f 0ð�uÞ, �u is the average state in the cell taken to be 1
4
ðui;j þ uiþ1;j þ uiþ1;jþ1 þ ui;jþ1Þ, k is chosen

accordingly in the problem, � is a small number which avoids the denominator to be zero and is taken as 10�6
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in our tests. The number a is the distribution coefficient associated with the convection in the x-direction and is
determined by
a ¼
1; if �kx P e;

0; if �kx 6 �e;

rð�kx; eÞ; otherwise;

8><
>:
where �kx is defined as above and e is chosen accordingly in the problem. The function r(Æ,Æ) is given in Eq. (2.8).
Similarly, the distribution coefficient b̂ in the y-direction is given by
b̂ ¼
bþ km

2ðj�ky jþ�ÞDy
jþ1

2

1þ km
ðj�ky jþ�ÞDy

jþ1
2

ð3:5Þ
with �ky ¼ g0ð�uÞ. The number b is the distribution coefficient associated with the convection in the y-direction
and is determined by
b ¼
1; if �ky P e;

0; if �ky 6 �e;

rð�ky ; eÞ; otherwise:

8><
>:
Our numerical experience indicates that when the initial condition has shocks or sharp gradients present in
the converging process, or the physical viscosity is very small, extra dissipation might be needed near those
regions for the pseudo time marching towards steady state to proceed in a stable fashion. We therefore
add an additional dissipation residual Uk

diss to each of Uk, only around regions with sharp gradients. The add-
ing of dissipation residual is acceptable only if it is much smaller than the residual of physical viscosity. Hence,
we concentrate on the cases where dissipation residuals are negligible comparing with the residuals of physical
viscosity.

The dissipation residuals are defined as the following:
U1
diss ¼

d
2
D3 uiþ1;jþ1 � ui;jþ1

Dxiþ1
2

þ uiþ1;jþ1 � uiþ1;j

Dyjþ1
2

 !
;

U2
diss ¼

d
2
D3 uiþ1;j � ui;j

Dxiþ1
2

þ uiþ1;j � uiþ1;jþ1

Dyjþ1
2

 !
;

U3
diss ¼

d
2
D3 ui;jþ1 � uiþ1;jþ1

Dxiþ1
2

þ ui;jþ1 � ui;j

Dyjþ1
2

 !
;

U4
diss ¼

d
2
D3 ui;j � uiþ1;j

Dxiþ1
2

þ ui;j � ui;jþ1

Dyjþ1
2

 !
;

ð3:6Þ
where D ¼ maxðDxiþ1
2
;Dyjþ1

2
Þ and the dissipation coefficient d is chosen accordingly in the problem.

Finally, we define the distributed residuals by ~Ul ¼ Ul þ hUl
diss, l = 1, . . . ,4, where h is a discontinuity indi-

cator defined by h = max(hx,hy), with the one-dimensional discontinuity indicators hx and hy for the x and y

directions given as in [26]; hx is defined by hx ¼ b
bþc with
ai ¼ jui�1;j � ui;jj2 þ e; b ¼ ai

ai�1

þ aiþ1

aiþ2

� �2

; c ¼ jumax � uminj2

ai
; ð3:7Þ
where umax and umin are the maximum and minimum values of uij for all grid points, and hy is defined similarly,
but in the y-direction. A similar indicator with a wider stencil
b ¼ ai�2

ai�3

þ ai�1

ai�2

þ ai

ai�1

þ aiþ1

aiþ2

þ aiþ2

aiþ3

þ aiþ3

aiþ4

� �2

; c ¼ jumax � uminj2

ai�1 þ ai þ aiþ1 þ aiþ2
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with the same ai as that defined in (3.7), is used for two-dimensional systems. Here e is a small positive number
taken as 10�6 in our numerical experiments. Clearly, 0 6 h 6 1. Near a strong discontinuity, c� b, h is close
to 1. However, in smooth regions, h = O(D2), hence fourth order accuracy is maintained in smooth regions.
This dissipation mechanism works well for our numerical experiments, but it may not be the optimal approach
as it has an adjustable coefficient d, whose choice for optimal performance seems to be problem dependent.
Other dissipation mechanisms, such as the one adopted by Abgrall in [2], will be explored in the future.

The point value uij is then updated through sending the distributed residuals to the point (xi,yj), as in a
pseudo time-marching scheme, which can be written as a semi-discrete system
duij

dt
þ 1

jCijj
~U4

iþ1
2;jþ

1
2
þ ~U3

iþ1
2;j�

1
2
þ ~U2

i�1
2;jþ

1
2
þ ~U1

i�1
2;j�

1
2

� �
¼ 0: ð3:8Þ
We again use a third order TVD Runge–Kutta scheme for the pseudo time discretization. As in the one-
dimensional case, a steady state of Eq. (3.8) may not imply a zero cell residual Uiþ1

2;jþ
1
2
¼ 0 for all i,j, and

Uiþ1
2;jþ

1
2

may not be small around sharp gradients even if the steady state solution of Eq. (3.8) is reached. More-
over, we may lose the strict residual property after adding dissipation residuals, but note that conservation is
still preserved after adding the dissipation since

P4
k¼1U

k
diss ¼ 0. In addition, the residual property is maintained

in smooth regions. It might be possible to improve upon the design of these dissipation residuals to remove
their negative effect on local residual property, along the lines of [1] and [6]. This will be investigated in the
future. Convergence towards weak solutions in this case relies on a Lax-Wendroff type theorem, and the proof
is provided in Appendix. We remark here that in the proof, due to some technical difficulties, we additionally
assume uniform or smoothly varying meshes and linear integration in residual evaluation of the diffusion
terms. Those assumptions do not seem necessary according to our numerical experiments, and we are still
exploring a proof for a more general setting. The numerical results presented in this paper are mostly per-
formed on non-smooth meshes, all with WENO weights in the integration associated with the diffusion terms.

We now summarize the procedure of the high order RD finite difference WENO scheme for two-dimen-
sional scalar steady state problems:

1. Compute the residuals (3.2) using WENO integration and linear interpolation for the derivatives with a
proper accuracy.

2. Distribute the residuals according to Eq. (3.3).
3. Revise the residuals by adding a dissipation residual (3.6).
4. Update the point values through sending the residuals and forward in pseudo time (3.8) by a TVD Runge–

Kutta time discretization until the steady state is reached.

3.2. Two-dimensional systems

Consider a two-dimensional steady state system (3.1) where u, f(u), g(u) and h(u,x,y) are vector-valued
functions in Rm. The viscosity coefficient m is a semi-positive definite matrix. For convection–diffusion systems,
we assume that any real linear combination of the Jacobians n1f 0(u) + n2g 0(u) is diagonalizable with real eigen-
values. In particular, we assume f 0(u) and g 0(u) can be written as LxKxRx and LyKyRy, respectively, where Kx

and Ky are diagonal matrices with real eigenvalues on the diagonal, and Lx, Rx and Ly, Ry are matrices of left
and right eigenvectors for the corresponding Jacobians.

The grid, the grid function and the control volumes are denoted as in Section 3.1. The residual in the cell
I iþ1

2;jþ
1
2
¼ ½xi; xiþ1� � ½yj; yjþ1� is still defined by (3.2). As before, if we reach the zero cell residual limit of the

scheme, the accuracy of the scheme is determined by the accuracy of the approximations to the integrations
and the derivatives. We again use a fourth order central WENO integration, and fourth order central linear
interpolation to approximate the derivatives. For simplicity and without ambiguity, we drop the subscript
ðiþ 1

2
; jþ 1

2
Þ in the residuals in the following.

We would distribute the residual U to the four vertices {Ml}l=1, . . . ,4, defined in Section 3.1, and the corre-
sponding residuals are still denoted by {Ul}l=1, . . . ,4, where Ul 2 Rm. We also require U ¼

P4
l¼1U

l and the resid-
ual property that jUlj/jUj should stay uniformly bounded. Here we consider a dimension by dimension
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procedure, coupled with a local characteristic field decomposition. First, we compute an average state �u in
I iþ1

2;jþ
1
2
, using either the simple arithmetic mean or a Roe’s average [19], and denote �Lx and �Rx as the matrices

with left and right eigenvectors Lx and Rx of f 0(u) evaluated at the average state, and �km
x the corresponding

eigenvalues; �Ly , �Ry and �km
y are defined similarly but associated with Ly, Ry and Ky of g 0(u).

We first consider the x-direction and project the residual U to the x-characteristic fields: W ¼ �RxU. The
residual W is to be split into two parts in the x-direction: one is W+, which is sent to the side xi+1; the other
is W�, sent to the side xi, and W = W+ + W�. W± are defined by
Wþ ¼ RW; W� ¼ ðI � RÞW; ð3:9Þ

where I is the identity matrix and R is a diagonal matrix with the mth diagonal component
Rmm ¼
am þ kjmj

2ðj�km
x jþ�ÞDx

iþ1
2

1þ kjmj
ðj�km

x jþ�ÞDx
iþ1

2

ð3:10Þ
with jmj the spectral radius of the matrix m, and � taken as 10�6 to avoid the denominator to be zero. The num-
ber am is the distribution coefficient associated with convection in mth x-characteristic field
am ¼
1; if �km

x P e;

0; if �km
x 6 �e;

rð�km
x ; eÞ; otherwise:

8><
>:
with the function r(Æ,Æ) defined by Eq. (2.8) and e chosen accordingly in the problem. Then we project W± back
to the physical space to obtain Û�
Ûþ ¼ �LxW
þ; Û� ¼ �LxW

�:
Next, we consider the y-direction, and we would distribute the two parts Û� in the y-direction. We first project
Û� to the y-characteristic fields to obtain P±
Pþ ¼ �RyÛ
þ; P� ¼ �RyÛ

�:
Then we distribute P± in the y-characteristic fields as follows:
�W1 ¼ CPþ; �W2 ¼ ðI � CÞPþ; �W3 ¼ CP�; �W4 ¼ ðI � CÞP�; ð3:11Þ

where I is the identity matrix and C is a diagonal matrix with the mth diagonal component
Cmm ¼
bm þ kjmj

2ðj�km
y jþ�ÞDy

jþ1
2

1þ kjmj
ðj�km

y jþ�ÞDy
jþ1

2

ð3:12Þ
with jmj and � defined as in Eq. (3.10). The number bm is the distribution coefficient associated with convection
in mth y-characteristic field
bm ¼
1; if �km

y P e;

0; if �km
y 6 �e;

rð�km
y ; eÞ; otherwise:

8>><
>>:
Finally, we project the distributed residuals back to the physical space
Ul ¼ �Ly
�Wl; l ¼ 1; . . . ; 4:
As in the scalar case, we add a dissipation residual Ul
diss to each of Ul around the sharp gradients. The dissi-

pation residuals are defined in Eq. (3.6). We define the distributed residuals by ~Ul ¼ Ul þ hUl
diss, l = 1, . . . ,4,

where h is the discontinuity indicator given in Eq. (3.7).
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The point value uij is then updated through sending the distributed residuals to the point (xi,yj), as in a
pseudo time-marching scheme, which can be written as the semi-discrete system (3.8). We again use a third
order TVD Runge–Kutta scheme for the pseudo time discretization.

We now summarize the procedure of the high order RD finite difference WENO scheme for two-dimen-
sional steady state systems:

1. Compute the residuals defined in Eq. (3.2) using WENO integration and linear interpolation for the deriv-
atives with a proper accuracy.

2. Project the residuals to the local x-characteristic fields.
3. Distribute the residuals in the x-direction according to Eq. (3.9), and transform the two parts of residuals

back to the physical space.
4. Project the residuals to the local y-characteristic fields.
5. Distribute the residuals in the y-direction, according to Eq. (3.11), and transform the four distributed resid-

uals back to the physical space.
6. Revise the residuals by adding a dissipation residual.
7. Update the point values through sending the residuals and forward in pseudo time (3.8) by a TVD Runge–

Kutta time discretization until the steady state is reached.

As before, conservation is still preserved after adding the dissipation since
P4

l¼1U
l
diss ¼ 0. In addition, the

residual property is maintained in smooth regions.
4. Numerical results

In this section we provide numerical experimental results to demonstrate the good behavior of our
schemes. Pseudo time discretization towards steady state is by the third order TVD Runge–Kutta method
in all numerical simulations. The time step Dt is defined by CFL D2

kDþl , where D = min{Dx,Dy}, k is the maxi-
mum of the local speed, l is the maximum diffusion coefficient, and the CFL number is taken to be 0.2
in our test cases. In Sections 4.1 and 4.2, for one-dimensional problems, the parameter e in Eq. (2.8) for
Roe’s entropy correction is taken as 0. In Sections 4.3 and 4.4, for two-dimensional problems, e is taken
as 0.01 unless otherwise stated. The constants k in the distribution coefficients, Eqs. (2.7), (2.16), (3.4),
(3.5), (3.10) and (3.12), are taken to be 0.5 for all cases. This choice is somewhat arbitrary, other choices
of k, such as k = 1, also work well in our numerical test. We have not pursued the issue of an optimal
or universal k in this paper.
4.1. One-dimensional scalar problems

In this subsection, numerical steady state is obtained with L1 nodal residue reduced to the round-off
level.

Example 4.1.1. We solve the steady state solution of the one-dimensional advection–diffusion equation
ut þ ux ¼ muxx
with the initial condition
uðx; 0Þ ¼ e
x�1
m ; x 2 ½0; 1�
which is itself a steady state solution. The boundary conditions are u(0,t) = 0 and u(1,t) = 1. The viscosity
coefficient m is taken as 0.05. This problem has a boundary layer around x = 1. We test our scheme on both
uniform meshes and non-uniform meshes. The non-uniform mesh has two distinct mesh sizes, Dx1 in the inter-
val [0.8,1], and Dx2 = 4Dx1 in [0,0.8]. The numerical results are shown in Table 1. We can see clearly that
fourth order accuracy is achieved and the magnitudes of the errors on non-uniform meshes are significantly
smaller than those on uniform meshes. This demonstrates the capability of the scheme to resolve the boundary
layer by locally refining the mesh.



Table 1
Errors and numerical orders of accuracy of the fourth order RD finite difference WENO scheme for Example 4.1.1 on non-uniform and
uniform meshes with N cells

N Non-uniform mesh Uniform mesh

L1 error Order L1 error Order L1 error Order L1 error Order

20 1.51E � 04 – 3.84E � 04 – 1.70E � 03 – 1.37E � 02 –
40 1.10E � 05 3.78 4.84E � 05 2.99 1.10E � 04 3.95 7.96E � 04 4.11
80 7.63E � 07 3.85 4.22E � 06 3.52 6.83E � 06 4.01 5.04E � 05 3.98

160 5.08E � 08 3.91 3.12E � 07 3.76 4.20E � 07 4.02 3.10E � 06 4.02
320 3.29E � 09 3.95 2.11E � 08 3.89 2.59E � 08 4.02 1.91E � 07 4.02
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Example 4.1.2. We consider the steady state solution of the viscous Burgers equation with a source term
Fig. 1.
from R
ut þ
u2

2

� �
x

¼ muxx � p cosðpxÞu; x 2 ½0; 1�
equipped with the boundary condition u(0,t) = 1 and u(1,t) = � 0.1. The viscosity coefficient m is taken as 0.01.
The initial condition is given by
uðx; 0Þ ¼
1; if 0 6 x < 0:3;

�0:1; if 0:3 6 x < 1:

�

We test our scheme on a non-uniform mesh with two distinct mesh sizes, Dx1 in the interval [0.1,0.3] and
Dx2 = 4Dx1 in the remaining part of the domain. The numerical result and the reference solution computed
from fifth order finite difference WENO scheme [12] with a fourth order central discretization for the viscous
term are displayed in Fig. 1. We can see the good resolution of the inner layer.
4.2. One-dimensional systems

In this subsection, the numerical steady state is obtained with L1 nodal residue reduced to the round-off
level.
x

y

0 0.25 0.5 0.75 1

-1

-0.75
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-0.25

0

0.25

0.5

0.75

1 RD-WENO
WENO

Reference solution computed from finite difference WENO scheme with 500 points (solid line), and numerical solution computed
D finite difference (symbols) on non-uniform mesh with 80 cells for Example 4.1.2.
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Example 4.2.1. We solve the steady state solution of the one-dimensional Navier–Stokes equations with a
source term on [0, 2p]
Table
Errors
non-sm

N

20
40
80

160
320
q

qu

E

0
B@

1
CA

t

þ
qu

qu2 þ p

uðE þ pÞ

0
B@

1
CA

x

¼

0
1

Re
4
3
uxx þ ðc� 1Þ cos xð4þ 2 sin xÞ

1
Re

2
3
ðu2Þxx þ 1

Re
1

ðc�1ÞPr
cp
q

� �
xx
þ c

RePr sin x

0
BB@

1
CCA;
where q denotes the density, u is the velocity of the fluid, E is the total energy and p ¼ ðc� 1ÞðE � 1
2
qu2Þ is the

pressure. The gas constant c is taken as 1.4, the Reynolds number Re is 200, and Pr is the Prandtl number
taken as 0.72.

Starting from a stationary initial condition (q,qu,E) = (2 + sin x, 0, (2 + sinx)(1 + 2 + sinx)) equipped with
a periodic boundary condition, we can check the order of accuracy.

We test our scheme on uniform meshes as well as on non-smooth meshes which are 20% randomly
perturbed form the uniform ones. The integration of the source term is evaluated exactly. The numerical
results are shown in Table 2. We can clearly see the fourth order accuracy, and the errors on these two types of
meshes are comparable.

Example 4.2.2. We test our scheme on the steady state solution of the one-dimensional nozzle flow problem
on [0, 1]
q

qu

E

0
B@

1
CA

t

þ
qu

qu2 þ p

uðE þ pÞ

0
B@

1
CA

x

¼ � a0ðxÞ
aðxÞ

qu

q2u2=q

uðE þ pÞ

0
B@

1
CAþ 1

Re

0
4
3
uxx

2
3
ðu2Þxx þ 1

ðc�1ÞPr
cp
q

� �
xx

0
BB@

1
CCA;
where a(x) represents the area of the cross section of the nozzle and other variables are defined as in Example
4.2.1. The Reynolds number Re is 400, and Pr is Prandtl number taken as 0.72.

We start with an isentropic initial condition, with a shock at x = 0.5. The density q and pressure p at �1
are 1, and the inlet Mach number at x = 0 is 0.8. The outlet Mach number at x = 1 is 1.8, with linear Mach
number distribution before and after the shock. The area of the cross section a(x) is then determined by the
relation
aðxÞf ðMach number at xÞ ¼ constant; 8x 2 ½0; 1�;
where
f ðwÞ ¼ w
ð1þ dw2Þp ; d ¼ 1

2
ðc� 1Þ; p ¼ 1

2
� cþ 1

c� 1
:

We test our scheme on a non-uniform mesh with two distinct mesh sizes, Dx1 in the interval [0.4,0.6], and
Dx2 = 4Dx1 in the remaining part of the domain.
2
and numerical orders of accuracy for the density q of the fourth order RD finite difference WENO scheme for Example 4.2.1 on
ooth and uniform meshes with N cells

Non-smooth mesh Uniform mesh

L1 error Order L1 error Order L1 error Order L1 error Order

2.32E � 04 – 3.48E � 04 – 2.03E � 04 – 3.21E � 04 –
1.31E � 05 4.14 2.03E � 05 4.10 1.29E � 05 3.98 2.02E � 05 3.99
8.17E � 07 4.01 1.28E � 06 3.99 8.06E � 07 4.00 1.27E � 06 4.00
5.06E � 08 4.01 7.95E � 08 4.01 4.87E � 08 4.05 7.70E � 08 4.04
1.45E � 09 5.12 3.12E � 09 4.67 1.52E � 09 5.00 3.78E � 09 4.35
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We compare our numerical solution with the reference solution computed from fifth order finite difference
WENO scheme with fourth order central discretization for the viscous terms using 200 points. From Fig. 2, we
can see that the inner layer is resolved well.

Example 4.2.3. We solve the steady state solution of the one-dimensional semiconductor hydrodynamic (HD)
model, see [11]
n

p

W

0
B@

1
CA

t

þ
nv

pvþ knT

vðW þ knT Þ

0
B@

1
CA

x

¼
0

en/x � p
sp

env/x � W�W 0

sw

0
B@

1
CAþ

0

0

jT x

0
B@

1
CA

x

:

The electric field �/x is obtained from the Poisson equation
/xx ¼
e
�
ðn� ndÞ:
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Here, n denotes the electron concentration, v is the velocity, W is the total energy, and e = 0.1602 is the
charge of the electron. The momentum p is related to v by p = mnv, where m is the electron mass taken as
0.26 · 0.9190, and the temperature T is related to the total energy by
D
en

si
ty

Fig. 3
differe
W ¼ 3

2
knT þ 1

2
mnv2
and k = 0.138 · 10�4 is the Boltzmann constant. The momentum and energy relaxation times are given by
sp ¼ Cp

T 0

T and sw ¼ Cw
T

TþT 0
þ 1

2
sp, where Cp and Cw are constants determined by
Cp ¼
m
e

l0; Cw ¼
3l0kT 0

2ev2
s

with l0 = 0.14 for the HD model and vs = 0.1 in our unit. The thermal conductivity j is governed by the
Wiedemann-Franz law, described by j ¼ 3

2
n k2l0T 0

e .

The silicon diode we simulate has a length of 0.6 lm with a doping defined by nd = 5 · 1017 cm�3 in [0,0.1]
and in [0.5,0.6] and nd = 3 · 1015 cm�3 in [0.15,0.45], with a smooth transition in between. The lattice temper-
ature is taken as T0 = 300 K.

The boundary conditions are given as follows: / ¼ /0 ¼ kT
e logðnd

ni
Þ at the left boundary, with

ni = 1.4 · 1010 cm�3, / = /0 + vbias with the voltage drop vbias = 1.5 at the right boundary for the potential;
T = 300 K at both boundaries for the temperature; n = 5 · 1017 cm�3 at both boundaries for the concentra-
tion; and a Neumann boundary condition is used for the velocity v at both boundaries.

We test our scheme on a non-uniform mesh with two distinct mesh sizes, Dx1 in the interval [0.05,0.15] and
[0.45, 0.55] near the junctions, and Dx2 = 4Dx1 in the remaining part of the domain. In Fig. 3, we compare our
results with the solution computed from third order ENO finite difference scheme [11]. We can see that the
overshoot is captured very well. In this particular case, we need extra dissipation to stabilize the system.
The artificial dissipation is added through a one-dimensional discontinuity indicator, as described in Section
3.1, and the coefficient d for the dissipation (3.6) is taken as 10.
4.3. Two-dimensional scalar problems

In this subsection, numerical steady state is obtained with L1 nodal residue reduced to the round-off level.
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Example 4.3.1. We solve the steady state problem of two-dimensional advection–diffusion equation
Table
Errors
uniform

N · N

20 · 2
40 · 4
80 · 8

160 · 1
320 · 3
ut þ ux þ uy ¼ mðuxx þ uyyÞ; ðx; yÞ 2 ½0; 1� � ½0; 1�
with the initial condition given by
uðx; y; 0Þ ¼ e
x�1
m þ

y�1
m

which is itself a steady state solution. The viscosity coefficient m is taken as 0.05, and the exact solution is im-
posed on the boundaries.

This problem has boundary layers along x = 1 and y = 1. For this example, the parameter e in (2.8) for
Roe’s entropy correction is taken as 0. We test our scheme on both uniform meshes and non-uniform meshes.
The non-uniform mesh has two distinct mesh sizes, Dx1, Dy1 in the interval [0.8,1.0], and Dx2 = 4Dx1,
Dy2 = 4Dy1 in [0, 0.8].

For an example of the non-uniform mesh, see Fig. 4. The numerical results are shown in Table 3. We can
see clearly that fourth order accuracy is achieved, with magnitudes of the errors on non-uniform meshes
significantly smaller than those on uniform meshes. This demonstrates the capability of the scheme to resolve
the boundary layers.

Example 4.3.2. We consider the one-dimensional viscous Burgers equation viewed as a two-dimensional
steady state problem
x

y

0 0.5 1
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0.3
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0.5
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0.7

0.8

0.9

1

Fig. 4. A demonstration of the non-uniform mesh with 20 · 20 cells.

3
and numerical orders of accuracy of the fourth order RD finite difference WENO scheme for Example 4.3.1 on non-uniform and

meshes with N · N cells

Non-uniform mesh Uniform mesh

L1 error Order L1 error Order L1 error Order L1 error Order

0 8.89E � 06 – 1.37E � 04 – 4.26E � 05 – 4.49E � 03 –
0 7.89E � 07 3.49 7.14E � 06 4.26 3.32E � 06 3.68 3.68E � 04 3.61
0 6.70E � 08 3.56 7.27E � 07 3.30 2.14E � 07 3.96 1.96E � 05 4.23
60 4.93E � 09 3.76 6.15E � 08 3.56 1.31E � 08 4.03 1.17E � 06 4.06
20 3.38E � 10 3.87 4.57E � 09 3.75 7.98E � 10 4.04 6.95E � 08 4.07



Table
Errors
unifor

N · N

20 · 2
40 · 4
80 · 8

160 · 1
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ut þ
u2

2

� �
x

þ uy ¼ muxx; ðx; yÞ 2 ½�0:2; 0:2� � ½0; 0:4�: ð4:1Þ
This problem has the steady state solution
uðx; y;1Þ ¼
�4 sinhðyþ2x

m Þ
coshðyþ2x

m Þ þ e
1

ð200m�4yÞm
� 1

2

with the exact solution imposed on the boundaries.
The viscosity coefficient m is taken as 0.05. We start from an initial condition u(x,y, 0) = u(x, 0,0) and

march to steady state by a pseudo-time marching. We test our scheme on both uniform and non-smooth
meshes. The non-smooth meshes are 20% randomly perturbed from the uniform ones. Table 4 shows
fourth order accuracy for both meshes, and the magnitude of the errors are comparable. The three-
dimensional plot of the numerical solution on a non-smooth mesh with 80 · 80 cells and the cross sections
at y = 0.1,0.2, 0.3 compared with the exact solution are displayed in Fig. 5. We can clearly observe good
resolution of the numerical scheme for this example. The coefficient d for the dissipation (3.6) is taken
as 0.

Example 4.3.3. We again consider Eq. (4.1) on the domain [0, 1] · [0, 1] with the boundary conditions
uðx; 0; tÞ ¼ 1:5� 2x; uð0; y; tÞ ¼ 1:5; uð1; y; tÞ ¼ �0:5:
The viscosity coefficient m is taken as 0.02. We start from an initial condition u(x,y, 0) = u(x, 0,0) and march
to steady state by a pseudo-time marching. We solve the one-dimensional Burgers equation by using fifth
order finite difference WENO scheme with a fourth order central discretization for the viscous term with
500 points and compare with our numerical solution. In Fig. 6, the three-dimensional plot of the numerical
solution and the cross sections at y = 0.25, 0.5,0.75 are displayed. We can clearly observe good resolution of
the numerical scheme compared with the reference solution. The coefficient d for the dissipation (3.6) is
taken as 10.

Example 4.3.4. We consider the steady state solution of the following problem on ½0; 1=
ffiffiffi
2
p
� � ½0; 1=

ffiffiffi
2
p
�

ut þ
1ffiffiffi
2
p u2

2

� �
x

þ 1ffiffiffi
2
p u2

2

� �
y

¼ ð2
ffiffiffi
2
p
ðxþ yÞ � 2Þuþ mðuxx þ uyyÞ:
The boundary conditions are given as follows for point (x,y) on the boundary, with w ¼ ðxþ yÞ=
ffiffiffi
2
p

,

uðx; y; tÞ ¼ 1� 2wþ 2w2; if 0 6 w 6 0:3419;

�0:1� 2wþ 2w2; otherwise:

�

The initial condition is
4
and numerical orders of accuracy of the fourth order RD finite difference WENO scheme for Example 4.3.2 on non-uniform and

m meshes with N · N cells

Non-uniform mesh Uniform mesh

L1 error Order L1 error Order L1 error Order L1 error Order

0 1.16E � 02 – 1.44E � 01 – 1.09E � 02 – 1.44E � 01 –
0 1.16E � 03 3.32 1.85E � 02 2.96 1.10E � 03 3.31 1.72E � 02 3.06
0 7.30E � 05 3.99 1.12E � 03 4.04 7.08E � 05 3.96 1.26E � 03 3.77
60 4.57E � 06 4.00 8.13E � 05 3.79 4.50E � 06 3.98 8.46E � 05 3.90
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uðx; y; 0Þ ¼
1; if 0 6 w < 0:3;

�0:1; if 0:3 6 w < 1;

�

and the viscous coefficient is taken as 0.01. We test our scheme on a non-smooth mesh which is 20% randomly
perturbed from the uniform one.

The coefficient d for the dissipation (3.6) is taken as 10. The 3D plot for (x,y) in [0.06,0.7] · [0.06, 0.7] and
the cross section along the diagonal is displayed in Fig. 7.
4.4. Two-dimensional systems

In our numerical tests in this subsection, the L1 nodal residue can only be reduced to around 10�3–10�5 and
then stagnates at that level. This might be related to the boundary conditions or lack of suitable numerical
dissipation in certain regimes. More study is needed to address this issue.
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Example 4.4.1. We consider the two-dimensional Navier–Stokes equations
RD-WE
WENO
ut þ fðuÞx þ gðuÞy ¼ m1ðuÞx þ m2ðuÞy ; ð4:2Þ
where u = (q,qu,qv,E)T, f(u) = (qu,qu2 + p,quv,u(E + p))T, g(u) = (qv,quv,qv2 + p,v(E + p))T, m1(u) = (0,sxx,
sxy,usxx + vsxy � vx), and m2(u) = (0,syx,syy,usyx + vsyy � vy).

Here q is the density, (u,v) is the velocity, E is the total energy and p ¼ ðc� 1ÞðE � 1
2 ðqu2 þ qv2ÞÞ is the

pressure. The gas constant c is taken as 1.4 in our numerical tests. The variables sxx,sxy,syx,syy are viscous
stresses defined by
sxx ¼ �
2l
3
ðux þ vyÞ þ 2lux; sxy ¼ lðuy þ vxÞ ¼ syx; syy ¼ �

2l
3
ðux þ vyÞ þ 2luy
and heat flux components vx and vy are defined by
NO
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vx ¼ �
cl
Pr

p
ðc� 1Þq

� �
x

; vy ¼ �
cl
Pr

p
ðc� 1Þq

� �
y

;

where l, the viscosity coefficient, is taken as 5 · 10�3 and Pr is the Prandtl number taken as 0.72.
In this example, we consider a flow generated by pressure gradients on the domain [0,2] · [ � 1,1]. We start

with an initial condition where (q,u,v,p) = (1,0.1, 0,2.02) on x = 0 and (q,u,v,p) = (1,0.1, 0,2) on x = 1, with
a linear distribution in between. Non-slip boundary conditions are imposed on the y = � 1 and y = 1. The
boundary conditions for x = 0 and x = 1 are given by (q,u,v,p) = (1, 0.1,0,2.02) and (1,0.1, 0,2), respectively.
The coefficient d for the dissipation (3.6) is taken as 5. We test our scheme on a non-smooth mesh which is
20% perturbed form the uniform ones.
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Since the variation of density is relatively very small, we compare our numerical solution with the analytical
solution for incompressible flow. The theoretical profile of u is P

2l ð1� y2Þ for all x in [0,1], where P is the
pressure gradient � dp

dx. In Fig. 8, we plot the cross sections of both solutions at x = 1 and the convergence
history with L1 nodal residue which can only be reduced to the level around 10�4 and then stagnates at that
level.

Example 4.4.2. We solve the problem of flow passing a flat plate. Steady state solution of the Navier–
Stokes Eq. (4.2) is computed on the domain [1,1.5] · [0,2], with the plate on y = 0 and viscosity coefficient
l = 10�3. The variables of free stream flow is ðq1; u1; v1; p1Þ ¼ ð0:1; 0:5; 0; 1

cÞ. The initial condition is taken
as the free stream flow. Due to the low Mach number, the variation of density is negligible, and we simply
use the analytical solution for incompressible flow as boundary conditions on the two boundaries x = 1 and
x = 1.5. A non-slip boundary condition is imposed on the lower boundary y = 0, and we assume vanishing
derivatives on the upper boundary y = 1. The coefficient d for the dissipation (3.6) is taken as 5. We test
the problem on a mesh with a uniform discretization in a x direction, but in a y direction, in order to
resolve the boundary layer, we use two distinct mesh sizes, Dy1 in [0, 0.4] and Dy2 = 2Dy1 in [0.4,1]. In
Fig. 9, we compare the cross sections at x = 1.4 of our numerical solution with the analytical solution.
In this case, the L1 nodal residue can only be reduced to the level around 10�5 and then stagnates at that
level.

Example 4.4.3. We consider Eq. (4.2) on the domain [0,4] · [0, 1] with viscosity coefficient l = 2 · 10�3. We
start with an initial condition where (q,u,v,p) = (1.69997,2.61934,�0.50632,1.52819) on y = 4 and
ðq; u; v; pÞ ¼ ð1; 2:9; 0; 1

cÞ otherwise. The boundary conditions are given by (q,u,v,p) = (1.69997, 2.61934,
�0.50632,1.52819) on y = 1, and a non-slip boundary condition on y = 0. The left boundary at x = 0 is set
as an inflow with ðq; u; v; pÞ ¼ ð1; 2:9; 0; 1

cÞ, and the right boundary at x = 4 is set to be an outflow with no
boundary conditions prescribed (one-sided WENO integration is performed near the right boundary). The
coefficient d for the dissipation (3.6) is taken as 25. We test the problem on a mesh with a uniform discreti-
zation in a x direction, but in a y direction, we use two distinct mesh sizes, Dy1 in [0, 0.2] and [0.8,1], and
Dy2 = 4Dy1 in [0.2,0.8]. We use a finer mesh around y = 0 and y = 1 to resolve the boundary layers. The
numerical results are shown in Fig. 10. We can clearly see a good resolution of the layers. In this case, the
L1 nodal residue can only be reduced to the level around 10�3 and then stagnates at that level.
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5. Concluding remarks

In this paper we have designed a high order conservative residual distribution finite difference WENO
scheme on non-smooth Cartesian meshes for solving steady state solutions of convection–diffusion equations
in one and two space dimensions. The restriction on the meshes allows us to compute the residual dimension
by dimension to high order accuracy, and hence leads to the savings of computational costs. Without smooth-
ness assumptions on the meshes, we can resolve the inner or boundary layer regions by locally refining the
meshes while maintaining high order accuracy. The residual distribution is designed based on weighing the
effects of convection and diffusion, and principles are obeyed to ensure high order accuracy at steady state.
A Lax-Wendroff type theorem is proved for convergence towards weak solutions in one and two dimensions
with additional assumptions. The proof for a more general setting is still under exploration. Numerical exper-
iments are performed to demonstrate the accuracy and good resolution of our scheme around the layers. Gen-
eralization of the technique to 3D is straightforward and will be carried out in the future. As mentioned at the
beginning of Section 4.4, our scheme still has difficulty in reaching machine zero steady states for two-dimen-
sional systems. Acceleration techniques and improvement on the additional dissipation residual for stabilizing
the pseudo time marching, to help the scheme to reach machine zero steady states for multi-dimensional sys-
tems, will be explored in the future. Extension of the method for time accurate problems also constitute future
work.
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Appendix A. A Lax-Wendroff type theorem for two dimensions

In this appendix, we state and prove a Lax-Wendroff type theorem for convergence towards weak solutions
in the two-dimensional scalar case.

We follow all the notations in Section 3.1. In addition, we define Sx
iþ1

2
¼ fx jx 2 ½xi; xiþ1�g, Sy

jþ1
2

¼
fy jy 2 ½yj; yjþ1�g, Dxiþ1

2
¼ xiþ1 � xi, Dyjþ1

2
¼ yjþ1 � yj and Dx = maxiDxi, Dy = maxjDyj, D = max(Dx,Dy). Here

we assume 0 < C1 6 jDxiþ1
2
=Dyjþ1

2
j 6 C2 for all i,j. Also we define the function uDx,Dy as a piecewise constant

function where uDx,Dy(x,y) = uij, (x,y) 2 Cij.
As in Section 3.1, the residual in the cell I iþ1

2;jþ
1
2

given by (3.2) is approximated by
Uiþ1
2;jþ

1
2
¼ R f ðuDx;Dyðxiþ1; yÞÞ; Sy

jþ1
2

� �
�R f ðuDx;Dyðxi; yÞÞ; Sy

jþ1
2

� �
þRðgðuDx;Dyðx; yjþ1ÞÞ; Sx

iþ1
2
Þ

�RðgðuDx;Dyðx; yjÞÞ; Sx
iþ1

2
Þ �RðR hðuDx;Dy ; x; yÞ; Sy

jþ1
2

� �
; Sx

iþ1
2
Þ � m �R DxðuDx;Dy ; xiþ1; yÞ; Sy

jþ1
2

� �
þ m �R DxðuDx;Dy ; xi; yÞ; Sy

jþ1
2

� �
� m �RðDyðuDx;Dy ; x; yjþ1Þ; Sx

iþ1
2
Þ þ m �RðDyðuDx;Dy ; x; yjÞ; Sx

iþ1
2
Þ:
Here R is the one-dimensional numerical integration operator, with the first argument as the integrand and the
second the integration interval. The integral approximation can be written as a linear combination of the point
values of the integrand, as described in [8], and the weights are determined by a WENO procedure. The oper-
ator �R approximates the integral as well and have the same arguments as R. However, the weights in the rep-
resentation of linear combinations are assumed to be linear.

Therefore the residual with (2r � 1)th order accuracy can be represented by
Uiþ1
2;jþ

1
2
¼
Xr�1

k¼�rþ2

ðak
iþ1;jf ðuiþ1;jþkÞ � ak

ijf ðui;jþkÞÞDyjþ1
2
þ
Xr�1

k¼�rþ2

ðbk
i;jþ1gðuiþk;jþ1Þ � bk

ijgðuiþk;jÞÞDxiþ1
2

�RðR hðuDx;Dy ; x; yÞ; Sy
jþ1

2

� �
; Sx

iþ1
2
Þ � m

Xr�1

k¼�rþ2

ðckDxðuDx;Dy ; xiþ1; yjþkÞ

� ckDxðuDx;Dy ; xi; yjþkÞÞDyjþ1
2
� m

Xr�1

k¼�rþ2

ðdkDyðuDx;Dy ; xiþk; yjþ1Þ

� dkDyðuDx;Dy ; xiþk; yjÞÞDxiþ1
2
; ðA:1Þ
where the coefficients ak
ij ¼ ak

ijðui;j�rþ2; . . . ; ui;jþr�1Þ are Lipschitz continuous functions in all the arguments, and
so are bk

ij. For example, the WENO weights used in this paper are Lipschitz continuous since the smoothness
indicators are smooth functions of u. Note that since we use linear weights in �R and we also assume uniform
meshes for the proof of the Lax-Wendroff type theorem, the coefficients ck and dk are independent of (i,j).

In Eq. (A.1), the operators Dx and Dy are one-dimensional approximations of the first derivatives. By the
fact that only uniform meshes and linear weights for the derivatives are considered, we have
DxðuDx;Dy ; xi; yÞ ¼
Xr�1

m¼�rþ1

pmuDx;Dyðxiþm; yÞ

DyðuDx;Dy ; x; yjÞ ¼
Xr�1

m¼�rþ1

qmuDx;Dyðx; yjþmÞ
ðA:2Þ
with (2r � 2)th order accuracy. Since we use symmetric linear weights to approximate the derivatives, and fur-
thermore assume (in this proof) uniform meshes, we have
pm ¼ �p�m; qm ¼ �q�m:
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The distributed residuals, as defined in Section 3.1, are ~Uk
iþ1

2;jþ
1
2
; k ¼ 1; . . . ; 4, which are revised from the ori-

ginal one by adding a dissipation residual hUk
diss defined in Eq. (3.6), where h is the local discontinuity indica-

tor. Suppose the residuals satisfy the conservation property, by the fact that
P4

k¼1U
k
diss ¼ 0
Uiþ1
2;jþ

1
2
¼
X4

k¼1

~Uk
iþ1

2;jþ
1
2
¼
X4

k¼1

Uk
iþ1

2;jþ
1
2

ðA:3Þ
and residual property for the unrevised distributed residuals

jUk

iþ1
2;jþ

1
2
j

jUiþ1
2;jþ

1
2
j 6 C; k ¼ 1; . . . ; 4: ðA:4Þ
Equipped with properties mentioned above, we have the following theorem.

Theorem A.1. Assume that the flux function f and g in Eq. (3.1) are Lipschitz continuous, and the source term

h(u,x,y) is continuous in all arguments. Suppose that the mesh is uniform: Dxiþ1
2
¼ Dx and Dyjþ1

2
¼ Dy for all i,j. If

uDx,Dy is a steady state solution of Eq. (3.8) satisfying Eqs. (A.1), (A.3) and (A.4), and there is a function u with

bounded total variation such that
uDx;Dy ! u in L1ðR2Þ; as Dx;Dy ! 0
and
sup
Dx;Dy

sup
x;y
juDx;Dyðx; yÞj 6 C
then u is a weak solution to Eq. (3.1).

Proof. Let u 2 C10 ðR2Þ be a test function, and denote uij = u(xi,yj). At steady state, we have
0 ¼
X

i;j

ð~U1
i�1

2;j�
1
2
þ ~U2

i�1
2;jþ

1
2
þ ~U3

iþ1
2;j�

1
2
þ ~U4

iþ1
2;jþ

1
2
Þ uij

¼
X

i;j

Ui�1
2;j�

1
2
uij �

X
i;j

U2
i�1

2;jþ
1
2
ðui;jþ1 � uijÞ �

X
i;j

U3
iþ1

2;j�
1
2
ðuiþ1;j � uijÞ �

X
i;j

U4
iþ1

2;jþ
1
2
ðuiþ1;jþ1 � uijÞ þ dD3

�
X

i;j

hi�1
2;j

uij � ui�1;j

Dx
þ hiþ1

2;j

uij � uiþ1;j

Dx
þ hi;j�1

2

uij � ui;j�1

Dy
þ hi;jþ1

2

uij � ui;jþ1

Dy

� �
uij

¼ Iþ IIþ IIIþ IVþ V:
We look at the first summation term,
I ¼
X

i;j

Ui�1
2;j�

1
2
uij

¼
X

i;j

Xr�1

k¼�rþ2

ak
ijf ðui;jþkÞ � ak

i�1;jf ðui�1;jþkÞ
� �

Dy ui;jþ1 þ
X

i;j

Xr�1

k¼�rþ2

bk
ijgðuiþk;jÞ � bk

i;j�1gðuiþk;j�1Þ
� �

Dx uiþ1;j

�
X

i;j

RðR hðuDx;Dy ; x; yÞ; Sy
j�1

2

� �
; Sx

i�1
2
Þ uij �

X
i;j

Xr�1

k¼�rþ2

ðckDxðuDx;Dy ; xi; yjþkÞ � ckDxðuDx;Dy ; xi�1; yjþkÞÞDy ui;jþ1

�
X

i;j

Xr�1

k¼�rþ2

ðdkDyðuDx;Dy ; xiþk; yjÞ � dkDyðuDx;Dy ; xiþk; yj�1ÞÞDx uiþ1;j

¼ �
X

i

X
j

R f ðuDx;Dy ; xi; yÞ; Sy
jþ1

2

� �uiþ1;jþ1 � ui;jþ1

Dx
Dx�

X
j

X
i

RðgðuDx;Dy ; x; yjÞ; Sx
iþ1

2
Þ
uiþ1;jþ1 � uiþ1;j

Dy
Dy

�
X

i;j

RðR hðuDx;Dy ; x; yÞ; Sy
j�1

2

� �
; Sx

i�1
2
Þ uij �

X
i;j

Xr�1

k¼�rþ2

ðckDxðuDx;Dy ; xi; yjþkÞ � ckDxðuDx;Dy ; xi�1; yjþkÞÞDy ui;jþ1

�
X

i;j

Xr�1

k¼�rþ2

ðdkDyðuDx;Dy ; xiþk; yjÞ � dkDyðuDx;Dy ; xiþk; yj�1ÞÞDx uiþ1;j
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Note that
�
X

i

X
j

R f ðuDx;Dy ; xi; yÞ; Sy
jþ1

2

� �uiþ1;jþ1 � ui;jþ1

Dx
Dx! �

Z Z
f ðuÞ ux dxdy; as Dx;Dy ! 0

�
X

j

X
i

RðgðuDx;Dy ; x; yjÞ; Sx
iþ1

2
Þ
uiþ1;jþ1 � uiþ1;j

Dy
Dy ! �

Z Z
gðuÞ uy dxdy; as Dx;Dy ! 0
and
�
X

i;j

RðR hðuDx;Dy ; x; yÞ; Sy
j�1

2

� �
; Sx

i�1
2
Þ uij !

Z Z
hðu; x; yÞ udxdy; as Dx;Dy ! 0:
Moreover, by Eq. (A.2), we have
X
i;j

Xr�1

k¼�rþ2

ðckDxðuDx;Dy ; xi; yjþkÞ � ckDxðuDx;Dy ; xi�1; yjþkÞÞDy ui;jþ1

¼
X

i;j

Xr�1

k¼�rþ2

ck
Xr�1

m¼�rþ1

pmuiþm:jþk �
Xr�1

m¼�rþ1

pmui�1þm:jþk

 !
Dy ui:jþ1

¼
X

i;j

Xr�1

k¼�rþ2

Xr�1

m¼�rþ1

ckpmðuiþm:jþk � ui�1þm:jþkÞDy ui;jþ1

¼ �
X

i;j

Xr�1

k¼�rþ2

Xr�1

m¼�rþ1

ckpmuiþm;jþkðuiþ1;jþ1 � ui;jþ1ÞDy

¼ �
X

i;j

Xr�1

k¼�rþ2

Xr�1

m¼�rþ1

ckpmui;jþkðuiþ1�m;jþ1 � ui�m;jþ1ÞDy

¼
X

i;j

Xr�1

k¼�rþ2

Xr�1

m¼�rþ1

ckpmui;jþkðuiþ1þm;jþ1 � uiþm;jþ1ÞDy

¼
X

i;j

R uDx;Dyðxi; yÞ; Sy
jþ1

2

� �Dxðu; xiþ1; yjþ1Þ �Dxðu; xi; yjþ1Þ
Dx

Dx:
Note that as Dx,Dy! 0,
X
i;j

R uDx;Dyðxi; yÞ; Sy
jþ1

2

� �Dxðu; xiþ1; yjþ1Þ �Dxðu; xi; yjþ1Þ
Dx

Dx!
Z Z

uuxx dxdy:
Therefore, as Dx,Dy! 0,
X
i;j

Xr�1

k¼�rþ2

ðckDxðuDx;Dy ; xi; yjþkÞ � ckDxðuDx;Dy ; xi�1; yjþkÞÞDy ui;jþ1 !
Z Z

uuxx dxdy: ðA:5Þ
Similarly,
X
i;j

Xr�1

k¼�rþ2

ðdkDyðuDx;Dy ; xiþk; yjÞ � dkDyðuDx;Dy ; xiþk; yj�1ÞÞDx uiþ1;j !
Z Z

uuyy dxdy: ðA:6Þ
So as Dx,Dy! 0
I! �
Z Z

f ðuÞ ux dxdy �
Z Z

gðu; xÞ uy dxdy �
Z Z

hðu; x; yÞ udxdy � m
Z Z

uuxx dxdy

� m
Z Z

uuyy dxdy:
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Next, we estimate the second term II
jIIj ¼
X

i;j

U2
i�1

2;jþ
1
2
ðui;jþ1 � uijÞ

�����
����� 6

X
i;j

jU2
i�1

2;jþ
1
2
jjui;jþ1 � uijj 6 C

X
i;j

jUi�1
2;jþ

1
2
jjui;jþ1 � uijj

6 C
X

i;j

Xr�1

k¼�rþ2

jak
ijf ðui;jþkÞ � ak

i�1;jf ðui�1;jþkÞjjui;jþ1 � uijjDy þ C
X

i;j

Xr�1

k¼�rþ2

jbk
i;jþ1gðuiþk;jþ1Þ

� bk
ijgðuiþk;jÞjjui;jþ1 � uijjDxþ C

X
i;j

RðR jhðuDx;Dy ; x; yÞj; Sy
jþ1

2

� �
; Sx

i�1
2
Þ jui;jþ1 � ui;jj

þ C
X

i;j

Xr�1

k¼�rþ2

jckDxðuDx;Dy ; xi; yjþkÞ � ckDxðuDx;Dy ; xi�1; yjþkÞjjui;jþ1 � ui;jjDy

þ C
X

i;j

Xr�1

k¼�rþ2

jdkDyðuDx;Dy ; xiþk; yjþ1Þ � dkDyðuDx;Dy ; xiþk; yjÞjjui;jþ1 � ui;jjDx:
Since
R R
jhðu; x; yÞjjuy jdxdy is bounded, with Lipschitz continuity of ak

ij, bk
ij and the flux functions, bounded-

ness of uij, (A.2) and 0 < C1 6 jDx/Dyj 6 C2, we have
jIIj 6 C3

X
i;j

jui;j � ui�1;jjDxDy þ C3

X
i;j

jui;j � ui;j�1jDxDy þOðDyÞ: ðA:7Þ
The first term on the right side of (A.7) can be estimated by
X
i;j

jui;j � ui�1;jjDxDy 6
X

i;j

juij � uðxi; yjÞjDxDy þ Dy
X

i

X
j

juðxi; yjÞ � uðxi�1; yjÞjDxþ
X

i;j

juðxi�1; yjÞ

� ui�1;jjDxDy
and it goes to zero when the mesh is refined due to the L1 convergence of the numerical solution and the fact
that the limit solution u has bounded total variation. Similarly, the second term on the right side of (A.7) also
goes to zero when the mesh is refined. Therefore, II! 0 as Dx,Dy! 0. Similarly, we can easily prove that III,
IV! 0 as Dx,Dy! 0.

Lastly,
V ¼ dD3
X

i;j

hi�1
2;j

uij � ui�1;j

Dx
� hiþ1

2;j

uiþ1;j � ui;j

Dx

� �
uij þ dD3

X
i;j

hi;j�1
2

uij � ui;j�1

Dy
� hi;jþ1

2

ui;jþ1 � uij

Dy

� �
uij

¼ dD3
X

i;j

hi�1
2;j
ðuij � ui�1;jÞ

uij � ui�1;j

Dx
þ dD3

X
i;j

hi;j�1
2
ðuij � ui;j�1Þ

uij � ui;j�1

Dy
:

Clearly, the boundedness of h and uij implies that jVj is bounded by O(D), hence V! 0 as D! 0. We can now
conclude that
�
Z Z

f ðuÞux dxdy �
Z Z

gðuÞuy dxdy ¼
Z Z

hðu; x; yÞudxdy þ m
Z Z

uuxx dxdy þ m
Z Z

uuyy dxdy
so u is a weak solution of Eq. (3.1). h
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